Lie group analysis and similarity solution for fractional Blasius flow
نویسندگان
چکیده
منابع مشابه
Dual Solutions for Nonlinear Flow Using Lie Group Analysis
`The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD) flow of an upper-convected Maxwell (UCM) fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method h...
متن کاملBlasius Boundary Layer Solution With Slip Flow Conditions
As the number of applications of micro electro mechanical systems, or MEMS, increase, the variety of flow geometries that must be analyzed at the micro-scale is also increasing. To date, most of the work on MEMS scale fluid mechanics has focused on internal flow geometries, such as microchannels. As applications such as micro-scale flyers are considered, it is becoming necessary to consider ext...
متن کاملInclined Lorentzian force effect on tangent hyperbolic radiative slip flow imbedded carbon nanotubes: lie group analysis
The present paper focuses on numerical study for an inclined magneto-hydrodynamic effect on free convection flow of a tangent hyperbolic nanofluid embedded with Carbon nanotubes (CNTs) over a stretching surface taking velocity and thermal slip into account. Two types of nanoparticles are considered for the study; they are single and multi-walled nanotubes. The presentation of single-parameter g...
متن کاملSelf-similarity and fractional Brownian motions on Lie groups
The goal of this paper is to define and study a notion of fractional Brownian motion on a Lie group. We define it as at the solution of a stochastic differential equation driven by a linear fractional Brownian motion. We show that this process has stationary increments and satisfies a local self-similar property. Furthermore the Lie groups for which this self-similar property is global are char...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Nonlinear Science and Numerical Simulation
سال: 2016
ISSN: 1007-5704
DOI: 10.1016/j.cnsns.2016.01.010